Reinforcement Learning – Part II

School of Computer Science, McGill University, Mila Montreal WCGill Set Mila

AI4Good Summer Lab 2020

Khimya Khetarpal

Slides adapted from Doina Precup, David Silver, and Rich Sutton's book

Who am ^{1?}

Embedded Systems Engineer

Ph.D. in Computer Science

Perceptual Computing Engineer

Masters in Computer Engineering

Research Associate

\Box Recap

- Q Markov Decision Processes
- Q Bellman Equations
- **Q Dynamic Programming**
- **Q Temporal Difference Learning**
- \square A Unified View of Reinforcement Learning

Outline

Agent-Environment Interaction

(Fig. from Sutton & Barto)

At each time step, the **agent**:

- Observes state $S_t \in S$
- Executes action $A_t \in A$
- Receives reward R_t

action A_t

At each time step, the *environment*:

- Receives action A_{t+1}
- Emits new state S_{t+1}
- Emits scalar reward R_{t+1} \bullet

Markov Property

The future is independent of the past given the present.

- The state captures all relevant information from the history
- The state is a sufficient statistic of the future
- distribution of immediate reward and next state

 $P(S_{t+1} | S_t, A_t) = P(S_{t+1} | S_1, A_1, S_2, A_2, \dots, S_t, A_t)$

• *Markovian assumption*: current state provides sufficient information to describe the

Markov Decision Processes

- learning
- A finite discrete-time MDP is a tuple $\langle S, A, R, P, \gamma \rangle$

• Markov decision processes (MDP) formally describes an environment for reinforcement

Markov Decision Processes

- learning
- A finite discrete-time MDP is a tuple $\langle S, A, R, P, \gamma \rangle$
- One-step *model* of the environment:
	- One-step state-transition probabilities

$$
p(s' | s, a) \doteq P_{ss'}^a = Pr(S_{t+1} = s' | S_t = s, A_t = a) = \sum_{r \in R} p(s', r | s, a)
$$

• One-step expected rewards

 $r(s, a) = R_s^a = E[R_{t+1} | S_t =$

• Markov decision processes (MDP) formally describes an environment for reinforcement

$$
[s, A_t = a] = \sum_{r \in R} r \sum_{s' \in S} p(s', r | s, a)
$$

policy π .

 $v_{\pi}(s) = E_{\pi}[G_t | S_t = s]$

Value Function

• The value of being in a state is the expected return starting from state s, and then following

- policy π .
	- $v_{\pi}(s) = E_{\pi}[G_t | S_t = s]$

$$
v_{\pi}(s) = E_{\pi}[R_{t+1} + \gamma R_{t+2}]
$$

Value Function

• The value of being in a state is the expected return starting from state s, and then following

 $S_2 + \gamma^2 R_{t+3} + \ldots | S_t = s]$

- policy π .
	- $v_{\pi}(s) = E_{\pi}[G_t | S_t = s]$

$$
v_{\pi}(s) = E_{\pi}[R_{t+1} + \gamma R_{t+2}]
$$

$$
= E_{\pi}[R_{t+1} + \gamma G_t]
$$

Value Function

• The value of being in a state is the expected return starting from state s, and then following

 $+ \gamma^2 R_{t+3} + \ldots | S_t = s]$ $\sum_{t+1}^t |S_t = s]$

- policy π .
	-

$$
v_{\pi}(s) = E_{\pi}[G_t | S_t = s]
$$

$$
v_{\pi}(s) = E_{\pi}[R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \dots | S_t = s]
$$

$$
= E_{\pi}[R_{t+1} + \gamma G_{t+1} | S_t = s]
$$

$$
= E_{\pi}[R_{t+1} + \gamma E_{\pi}[G_{t+1} | S_{t+1} = s'])
$$

Value Function

• The value of being in a state is the expected return starting from state s, and then following

- policy π .
	- $v_{\pi}(s) = E_{\pi}[G_t | S_t = s]$

$$
v_{\pi}(s) = E_{\pi}[R_{t+1} + \gamma R_{t+2}]
$$

$$
= E_{\pi}[R_{t+1} + \gamma G_{t+1}]
$$

$$
= E_{\pi}[R_{t+1} + \gamma E_{\pi}[G_{t+1} + \gamma G_{t+1}G_{t+1}]
$$

$$
= \sum_{a \in A} \pi(a \mid s) \left[R_s^a + \gamma H_s^a \right]
$$

• Values can be written in terms of successor values: Bellman equations

Value Function

• The value of being in a state is the expected return starting from state s, and then following

More on the Bellman Equation $v_\pi(s) = \sum_a \pi(a|s) \sum_{s',r}$

This is a set of equations (in fact, linear), one for each state. The value function for π is its unique solution.

Backup diagrams:

$$
\left[p(s',r|s,a)\Big[r+\gamma v_{\pi}(s')\Big]\right]
$$

Action-Value Function

• The value of taking an action a in a state s under policy π

 $q_{\pi}(s, a) = E_{\pi}[G_t | S_t = s, A_t = a]$

$$
q_{\pi}(s,a) = R_s^a + \gamma \sum_{s' \in S} P_{ss'}^a \sum_{a' \in A} \pi(a'|s') q_{\pi}(s',a')
$$

Optimal Policies and Value Functions

• Value functions define a partial order over policies:

$$
\pi_1 \ge \pi_2 \text{ iff } v_{\pi_1}(s) \ge v_{\pi_2}(s), \forall s \in S
$$

- return at all states
- The optimal state-value function $v^*(s)$ is the maximum value function over all policies

$$
\mathbf{v}^*(\mathbf{s}) = m
$$

• The optimal action-value function $q^*(s, a)$ is the maximum action-value function over all policies

$$
q^*(s,a)=1
$$

• If a policy is better than another policy if and only if, it generates at least the same amount of

 $\max \mathbf{v}_{\pi}(\mathbf{s})$ π

max $\mathbf{q}_{\pi}(\mathbf{s}, \mathbf{a})$ π

Why Optimal State-Value Functions are Useful

Any policy that is greedy with respect to v_* is an optimal policy.

Therefore, given v_* , one-step-ahead search produces the long-term optimal actions.

E.g., back to the gridworld:

a) gridworld

b) v_*

c) π_*

What About Optimal Action-Value Functions?

Given q_* , the agent does not even have to do a one-step-ahead search:

 $\pi_*(s)$ = arg max $q_*(s,a)$

Bellman Optimality Equation for *v**

The value of a state under an optimal policy must equal the expected return for the best action from that state:

$$
v_*(s) = \max_{a} q_{\pi_*}(s, a)
$$

=
$$
\max_{a} \mathbb{E}[R_{t+1} + \gamma v_*(S_{t+1}) | S_t = s, A_t = a]
$$

=
$$
\max_{a} \sum_{s',r} p(s',r|s,a) [r + \gamma v_*(s')].
$$

The relevant backup diagram:

 v_* is the unique solution of this system of nonlinear equations.

max

The relevant backup diagram:

 q_* is the unique solution of this system of nonlinear equations.

Bellman Optimality Equation for *q**

$$
q_*(s, a) = \mathbb{E}\Big[R_{t+1} + \gamma \max_{a'} q_*(S_{t+1}, a') \Big| S_t = s, A_t = a\Big]
$$

=
$$
\sum_{s', r} p(s', r | s, a) \Big[r + \gamma \max_{a'} q_*(s', a')\Big].
$$

Dynamic Programming

Key Idea: Turn Bellman equations into update rules

For instance, we can use DP for

 \checkmark Iterative Policy Evaluation

- \checkmark Policy Iteration
- \checkmark Value Iteration

Iterative Policy Evaluation (Prediction)

- Problem: Evaluate a given policy π
- Solution: iterative application of Bellman expectation backup
	- $\bullet v_1 \rightarrow v_2 \rightarrow \dots \rightarrow v_{\pi}$
	- Using synchronous backups,
		- At each iteration $k + 1$
		- For all states $s \in S$
		- Update $v_{k+1}(s)$ from $v_k(s')$
		- where s' is a successor state of s

 π = equiprobable random action choices

 R_{-} -1 on all transitions

$$
v_{k+1} = \sum_{a \in A} \pi(a \mid s) \left(R_s^a + \gamma \sum_{s' \in S} P_{ss'}^a v_k(s') \right)
$$

V_k for the **Random Policy**

 $\begin{bmatrix} 0.0 & 0.0 & 0.0 \end{bmatrix}$ $\begin{bmatrix} 0.0 & 0.0 & 0.0 \end{bmatrix}$

 $k = 0$

Greedy Policy w.r.t. \boldsymbol{V}_k

 $\gamma = 1$

 π = equiprobable random action choices

$$
v_{k+1} = \sum_{a \in A} \pi(a \mid s) \left(R_s^a + \gamma \sum_{s' \in S} P_{ss'}^a v_k(s') \right)
$$

V_k for the **Random Policy**

Greedy Policy w.r.t. \boldsymbol{V}_k

 $k=1$

 $k = 0$

R_{-} -1 on all transitions

 $\gamma = 1$

 π = equiprobable random action choices

 R_{-} -1 on all transitions

$$
v_{k+1} = \sum_{a \in A} \pi(a \mid s) \left(R_s^a + \gamma \sum_{s' \in S} P_{ss'}^a v_k(s') \right)
$$

V_k for the **Random Policy**

 $\begin{bmatrix} 0.0 & 0.0 & 0.0 \end{bmatrix}$

 $\begin{bmatrix} 0.0 & 0.0 & 0.0 \end{bmatrix}$ 0.0

 $\begin{bmatrix} 0.0 & 0.0 & 0.0 \end{bmatrix}$

 0.0 -1.0 -1.0 -1.0

 $\left[-1.0\right]\left[-1.0\right]\left[-1.0\right]\left[-1.0\right]$

 $\left[-1.0\right]\left[-1.0\right]\left[-1.0\right]\left[-1.0\right]$

 -1.0 -1.0 -1.0 0.0

Greedy Policy w.r.t. V_k

 $k=1$

 $k = 0$

 $\gamma = 1$

 $k = 2$

 π = equiprobable random action choices

 R_{-} -1 on all transitions

$$
v_{k+1} = \sum_{a \in A} \pi(a \mid s) \left(R_s^a + \gamma \sum_{s' \in S} P_{ss'}^a v_k(s') \right)
$$

V_k for the **Random Policy**

 $\begin{bmatrix} 0.0 & 0.0 & 0.0 \end{bmatrix}$

 0.0 - 1.0 - 1.0 - 1.0

 $\left[-1.0\right]\left[-1.0\right]\left[-1.0\right]\left[-1.0\right]$

 -1.0 -1.0 -1.0 -1.0

 -1.0 -1.0 -1.0 0.0

 $\left| 0.0 \right|$ -1.7 -2.0 -2.0

 $\left[-1.7\right]\left[-2.0\right]\left[-2.0\right]\left[-2.0\right]$

 -2.0 -2.0 -2.0 -1.7

 $\left| 0.0 \right|$ -2.4 -2.9 -3.0

 -2.4 -2.9 -3.0 -2.9

 -2.9 -3.0 -2.9 -2.4

 -3.0 -2.9 -2.4 0.0

 \mid 0.0

 -2.0 -2.0 -1.7

Greedy Policy w.r.t. V_k

 $k=1$

 $k = 0$

 $\gamma=1$

 $k = 2$

 π = equiprobable random action choices

 R_{-} -1 on all transitions

$$
v_{k+1} = \sum_{a \in A} \pi(a \mid s) \left(R_s^a + \gamma \sum_{s' \in S} P_{ss'}^a v_k(s') \right)
$$

V_k for the **Random Policy**

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 $0.0 \begin{array}{|c|c|c|c|c|} \hline 0.0 & 0.0 \end{array}$ 0.0

0.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 0.0 -1.0

 0.0 -1.7 -2.0 -2.0

 -1.7 -2.0 -2.0 -2.0

 -2.0 -2.0 -2.0 -1.7

 $\begin{bmatrix} 0.0 & -2.4 & -2.9 & -3.0 \end{bmatrix}$

 -2.4 -2.9 -3.0 -2.9

 -2.9 -3.0 -2.9 -2.4

 -1.7 0.0

 -2.4 0.0

 -2.0 -2.0

 -3.0 -2.9

Greedy Policy w.r.t. V_k

 $\gamma=1$

 $k = 3$

 $k = 2$

 $k = 0$

 $k=1$

 $k = 10$

 $k = ∞$

Policy improvement theorem (How to improve the policy)

Given the value function for *any policy* π , evaluate the policy:

• Improve the policy by acting greedily with respect to the value function:

 $\pi'(s) = \arg \max_{a} q_{\pi}(s, a)$ (π') is not unique)

where better means:

 $q_{\pi'}(s, a) \geq q_{\pi}(s, a)$ for all s, a

. with equality only if both policies are optimal

 $q_{\pi}(s, a)$ for all s, a

The dance of policy and value (Policy Iteration)

• Policy evaluation: Estimate value function – Iterative policy evaluation

• Policy improvement: generate better policy by acting greedily – Greedy policy improvement

Each policy is *strictly better* than the previous, until *eventually both are optimal*

There are *no local optima*

The dance converges in a finite number of steps, usually very few

General Policy Iteration (GPI)

• Policy evaluation: Estimate value function - Any policy evaluation

• Policy improvement: generate better policy – Any policy improvement

Value Iteration

Recall the **full policy-evaluation backup**:

$$
v_{k+1}(s) = \sum_{a} \pi(a|s) \sum_{s',r} p(s',r|s,a) \Big[r + \gamma v_k(s') \Big] \qquad \forall s \in \mathcal{S}
$$

Here is the **full value-iteration backup**:

$$
v_{k+1}(s) = \max_{a} \sum_{s',r} p(s',r|s,a) \Big[r + \gamma v_k(s') \Big] \qquad \forall s \in \mathcal{S}
$$

Illustration: Rooms Example

Four actions, fail 30% of the time No rewards until the goal is reached, $\gamma=0.9$.

cf. Dynamic Programming

Curse of dimensionality

• Values are governed by nice recursive equations:

 $V_{k+1}(s) \leftarrow \max_{a \in A} \left(r_{s,s}^{a} \right)$

- variables (the dimensionality of the problem) E.g. in Go, there are 10^{170} states
- The *action set* may also be very large or continuous E.g. in Go, branching factor is ≈ 100 actions
- The solution may require *chaining many steps* E.g. in Go games take ≈ 200 actions

$$
{ss^{\prime }}^{a}+\gamma \underset{s^{\prime }\in S}{\sum }p{ss^{\prime }}^{a}V_{k}(s^{\prime })\Bigg)\text{ , }\forall s\in S
$$

• The number of states grows exponentially with the number of state

Key Challenges in RL

To solve large problems, we need to:

- *Approximate the iterations* (using sampling, cf. asynchronous dynamic programming, temporal-difference learning)
- Generalize the value function to unseen states using function approximation

Learning *online* using experience

Learning *online* using experience

Recall: Monte Carlo

 $V(S_t) \leftarrow V(S_t) + \alpha \big[G_t - V(S_t) \big]$

Temporal Difference (TD) Learning

 $V(S_t) \leftarrow V(S_t) + \alpha \Big[R_{t+1} + \gamma V(S_{t+1}) - V(S_t) \Big]$

Temporal Difference (TD) Learning

 $V(S_t) \leftarrow V(S_t) + \alpha \Big[R_{t+1} + \gamma V(S_{t+1}) - V(S_t) \Big]$

TD Prediction

function v_{π}

Recall: Simple every-visit Monte Carlo method:

 $V(S_t) \leftarrow V(S)$

Policy Evaluation (the prediction problem): for a given policy π , compute the state-value

$$
S_t) + \alpha \Big[G_t - V(S_t) \Big]
$$

target: the actual return after time t

function v_{π}

Policy Evaluation (the prediction problem): for a given policy π , compute the state-value

Recall: Simple every-visit Monte Carlo method:

 $V(S_t) \leftarrow V(t)$

The simplest temporal-difference method TD(0): $V(S_t) \leftarrow V(S_t) + \alpha$

$$
S_t) + \alpha \Big[G_t - V(S_t) \Big]
$$

target: the actual return after time *t*

$$
\left[\frac{R_{t+1} + \gamma V(S_{t+1}) - V(S_t)}{\sum_{t=1}^{t} \gamma V(S_t)} \right]
$$

You are the Predictor

Suppose you observe the following 8 episodes:

A, 0, B, 0

- B, 1
- B, 0

Assume Markov states, no discounting $(\gamma = 1)$

V(B)? *V*(A)?

You are the Predictor

TD vs MC (I)

- TD can learn *before* knowing the final outcome It can learn online after every step MC must wait until the end of the episode before return is known
- TD can learn *without* the final outcome TD can learn from incomplete sequences as opposed to MC (needs complete sequences) TD works in continuing environments, MC only works for episodic (terminating) environments

TD vs MC (II)

- Bias/Variance trade off
	- MC target i.e. the return is an unbiased estimate of the value function
	- TD target is a biased estimate
	- TD target is much lower variance than the return:
		- Return depends on *many* random actions, transitions, rewards
		- TD target depends on *one* random actions, transitions, rewards
- MC has high variance, zero bias
- TD has low variance, some bias

TD vs MC (III)

• Monte Carlo converges to solution with minimum mean-squared error (MSE) Best fit to observed returns $\sum_{t=1}^K \sum_{t=1}^{T_k} \left(G_t^k - V(s_t^k) \right)^2$

In the AB example, $V(A) = 0$

• TD(0) converges to solution of max likelihood Markovian model Solution to MDP that best fits the data $\hat{\mathcal{P}}^a_{s,s'} = \frac{1}{\mathcal{N}(s,a)} \sum_{k=1}^K \sum_{t=1}^{T_k} \mathbf{1}(s_t^k, a_t^k, s_{t+1}^k = s, a, s')$

$$
\hat{\mathcal{R}}_s^a = \frac{1}{N(s,a)}\sum_{k=1}^K\sum_{t=1}^{T_k} \mathbf{1}(s_t^k, a_t^k)
$$

In the AB example, $V(A) = 0.75$

 $p_t^k = s, a)r_t^k$

A, 0, B, 0 B, 1 *V*(B)? B, 1 B, 1 *V*(A)?B, 1 B, 1 B, 1 B, 0 $\bigoplus_{100\%}^{r=0}$

n-step TD Prediction

Idea: Look farther into the future when you do TD backup (1, 2, 3, …, *n* steps)

n-step TD Prediction

Idea: Look farther into the future when you do TD backup (1, 2, 3, …, *n* steps)

Mathematics of *n*-step TD Targets

•Monte Carlo: $G_t = R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \cdots + \gamma^{T-t-1} R_T$

•TD:

• Use V_t to estimate remaining return

•2 step return: $G_t^{(2)} = R_{t+1} + \gamma R_{t+2} + \gamma^2 V_t(S_{t+2})$

 $G_t^{(1)} \doteq R_{t+1} + \gamma V_t(S_{t+1})$

•*n*-step TD:

• *n*-step return:

$$
G_t^{(n)} \doteq G_t \text{ if } t+n \geq
$$

 $\geq T)$

Bootstrapping & Sampling

- Bootstrapping update involves an estimate
	- MC does not bootstrap
	- DP bootstraps
	- TD bootstraps
- Sampling update samples an expectation MC samples DP does not sample TD samples

Unified View of Reinforcement Learning

Thank You