Reinforcement Learning – Part II

Khimya Khetarpal

School of Computer Science, McGill University, Mila Montreal McGill Mila

Slides adapted from Doina Precup, David Silver, and Rich Sutton's book

AI4Good Summer Lab 2020

Who am I?

Ph.D. in Computer Science

Perceptual Computing Engineer

Masters in Computer Engineering

Research Associate

VEmbedded Systems Engineer

Undergrad in Electronics & Communications

Recap

- Markov Decision Processes
- Bellman Equations
- Dynamic Programming
- Temporal Difference Learning
- A Unified View of Reinforcement Learning

Outline

Agent-Environment Interaction

(Fig. from Sutton & Barto)

At each time step, the *agent*:

- Observes state $S_t \in S$
- Executes action $A_t \in A$
- Receives reward R_t

action A_t

At each time step, the *environment*:

- Receives action A_{t+1}
- Emits new state S_{t+1}
- Emits scalar reward R_{t+1}

Markov Property

The future is independent of the past given the present.

- The state captures all relevant information from the history
- The state is a sufficient statistic of the future
- distribution of immediate reward and next state

 $P(S_{t+1} | S_t, A_t) = P(S_{t+1} | S_1, A_1, S_2, A_2 \dots S_t, A_t)$

• *Markovian assumption*: current state provides sufficient information to describe the

Markov Decision Processes

- learning
- A finite discrete-time MDP is a tuple $\langle S, A, R, P, \gamma \rangle$

• Markov decision processes (MDP) formally describes an environment for reinforcement

Markov Decision Processes

- learning
- A finite discrete-time MDP is a tuple $\langle S, A, R, P, \gamma \rangle$
- One-step *model* of the environment:
 - One-step *state-transition probabilities*

$$p(s'|s, a) \doteq P_{ss'}^a = Pr(S_{t+1} = s'|S_t = s, A_t = a) = \sum_{r \in R} p(s', r|s, a)$$

• One-step *expected rewards*

 $r(s, a) = R_s^a = E[R_{t+1} | S_t =$

• Markov decision processes (MDP) formally describes an environment for reinforcement

$$[s, A_t = a] = \sum_{r \in R} r \sum_{s' \in S} p(s', r | s, a)$$

policy π .

 $v_{\pi}(s) = E_{\pi}[G_t | S_t = s]$

Value Function

• The value of being in a state is the expected return starting from state s, and then following

- policy π .
 - $v_{\pi}(s) = E_{\pi}[G_t | S_t = s]$

$$v_{\pi}(s) = E_{\pi}[R_{t+1} + \gamma R_{t+2}]$$

Value Function

• The value of being in a state is the expected return starting from state s, and then following

 $_{2} + \gamma^{2}R_{t+3} + \dots |S_{t} = s]$

- policy π .
 - $v_{\pi}(s) = E_{\pi}[G_t | S_t = s]$

$$v_{\pi}(s) = E_{\pi}[R_{t+1} + \gamma R_{t+2}]$$

$$= E_{\pi}[R_{t+1} + \gamma G_{t-1}]$$

Value Function

• The *value of being in a state* is the expected return starting from state s, and then following

 $[+\gamma^2 R_{t+3} + \dots | S_t = s]$ $[S_{t+1} | S_t = s]$

- policy π .
 - $v_{\pi}(s) = E_{\pi}[G_t]$
 - $v_{\pi}(s) = E_{\pi}[R_{t+1} + \gamma R_{t+2}]$
 - $= E_{\pi}[R_{t+1} + \gamma G_{t+1}]$ $= E_{\pi}[R_{t+1} + \gamma E_{\pi}[G_{t+1}]]$

Value Function

• The *value of being in a state* is the expected return starting from state s, and then following

$$S_{t} = s]$$

+ $\gamma^{2}R_{t+3} + \dots |S_{t} = s]$
+ $|S_{t} = s]$
+ $|S_{t+1} = s']]$

- policy π .
 - $v_{\pi}(s) = E_{\pi}[G_t | S_t = s]$

$$v_{\pi}(s) = E_{\pi}[R_{t+1} + \gamma R_{t+2}]$$

$$= E_{\pi}[R_{t+1} + \gamma G_{t+1}]$$
$$= E_{\pi}[R_{t+1} + \gamma E_{\pi}[G_{t}]]$$
$$= \sum_{a \in A} \pi(a \mid s) \left[R_{s}^{a} + \gamma R_{s}^{a}$$

• Values can be written in terms of successor values: *Bellman equations*

Value Function

• The *value of being in a state* is the expected return starting from state s, and then following

More on the Bellman Equation $v_{\pi}(s) = \sum_{a} \pi(a|s) \sum_{s',r}$

This is a set of equations (in fact, linear), one for each state. The value function for π is its unique solution.

Backup diagrams:

$$\sum_{n} p(s', r | s, a) \left[r + \gamma v_{\pi}(s') \right]$$

Action-Value Function

• The value of taking an action a in a state s under policy π

 $q_{\pi}(s, a) = E_{\pi}[G_t | S_t = s, A_t = a]$

$$q_{\pi}(s,a) = R_s^a + \gamma \sum_{s' \in S} P_{ss'}^a \sum_{a' \in A} \pi(a' | s') q_{\pi}(s',a')$$

Optimal Policies and Value Functions

• Value functions define a partial order over policies:

$$\pi_1 \geq \pi_2 \text{ iff } v_{\pi_1}(s) \geq v_{\pi_2}(s), \forall s \in S$$

- return at all states
- The optimal state-value function $v^*(s)$ is the maximum value function over all policies

$$\mathbf{v}^*(\mathbf{s}) = \mathbf{m}$$

• The optimal action-value function $q^{*}(s, a)$ is the maximum action-value function over all policies

$$q^{*}(s, a) = 1$$

• If a policy is better than another policy if and only if, it generates at least the same amount of

 $\max \mathbf{v}_{\pi}(\mathbf{s})$ π

 $\max \mathbf{q}_{\pi}(\mathbf{s}, \mathbf{a})$ π

Why Optimal State-Value Functions are Useful

Any policy that is greedy with respect to v_* is an optimal policy.

Therefore, given v_* , one-step-ahead search produces the long-term optimal actions.

E.g., back to the gridworld:

a) gridworld

24.4	22.0	19.4	17.5
22.0	19.8	17.8	16.0
19.8	17.8	16.0	14.4
17.8	16.0	14.4	13.0
16.0	14.4	13.0	11.7
	22.0 19.8 17.8	22.0 19.8 19.8 17.8 17.8 16.0	24.422.019.422.019.817.819.817.816.017.816.014.416.014.413.0

-		•		•
	1		•	-
	1			
	1			
	1			

b) *V**

c) π_{*}

What About Optimal Action-Value Functions?

Given q_* , the agent does not even have to do a one-step-ahead search:

 $\pi_*(s) = \arg\max_a q_*(s,a)$

Bellman Optimality Equation for V*

The value of a state under an optimal policy must equal the expected return for the best action from that state:

$$v_*(s) = \max_a q_{\pi_*}(s, a) = \max_a \mathbb{E}[R_{t+1} + \gamma v_*(S_{t+1}) \mid S_t = s, A_t = a] = \max_a \sum_{s', r} p(s', r \mid s, a) [r + \gamma v_*(s')].$$

The relevant backup diagram:

 v_* is the unique solution of this system of nonlinear equations.

max

Bellman Optimality Equation for q*

$$q_*(s,a) = \mathbb{E} \Big[R_{t+1} + \gamma \max_{a'} q_*(S_{t+1},a') \ \Big| \ S_t = s, A_t = a \Big] \\ = \sum_{s',r} p(s',r|s,a) \Big[r + \gamma \max_{a'} q_*(s',a') \Big].$$

The relevant backup diagram:

 q_* is the unique solution of this system of nonlinear equations.

Key Idea: Turn Bellman equations into update rules

For instance, we can use DP for

✓ Iterative Policy Evaluation

- ✓ Policy Iteration
- ✓ Value Iteration

Dynamic Programming

Iterative Policy Evaluation (Prediction)

- **Problem:** Evaluate a given policy π
- Solution: iterative application of Bellman expectation backup
 - $v_1 \rightarrow v_2 \rightarrow \ldots \rightarrow v_{\pi}$
 - Using synchronous backups,
 - At each iteration k + 1
 - For all states $s \in S$
 - Update $v_{k+1}(s)$ from $v_k(s')$
 - where s' is a successor state of s

 π = equiprobable random action choices

 $R_{=-1}$ on all transitions

$$v_{k+1} = \sum_{a \in A} \pi(a \mid s) \left(R_s^a + \gamma \sum_{s' \in S} P_{ss'}^a v_k(s') \right)$$

V_k for the Random Policy

0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0

k = 0

Greedy Policy w.r.t. V_k

 $\gamma = 1$

 π = equiprobable random action choices

 $R_{=-1}$ on all transitions

$$v_{k+1} = \sum_{a \in A} \pi(a \mid s) \left(R_s^a + \gamma \sum_{s' \in S} P_{ss'}^a v_k(s') \right)$$

V_k for the Random Policy

0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0

0.0 -1.0 -1.0 -1.0

-1.0 -1.0 -1.0 -1.0

-1.0 -1.0 -1.0 -1.0

-1.0 -1.0 -1.0 0.0

Greedy Policy w.r.t. V_k

k = 1

k = 0

 $\gamma = 1$

 π = equiprobable random action choices

 $R_{=-1}$ on all transitions

$$v_{k+1} = \sum_{a \in A} \pi(a \mid s) \left(R_s^a + \gamma \sum_{s' \in S} P_{ss'}^a v_k(s') \right)$$

V_k for the Random Policy

0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0

Greedy Policy w.r.t. V_k

k = 1

k = 0

0.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 0.0

₽

 $\gamma = 1$

k = 2

0.0	-1.7	-2.0	-2.0
-1.7	-2.0	-2.0	-2.0
-2.0	-2.0	-2.0	-1.7
-2.0	-2.0	-1.7	0.0

 π = equiprobable random action choices

 $R_{=-1}$ on all transitions

$$v_{k+1} = \sum_{a \in A} \pi(a \mid s) \left(R_s^a + \gamma \sum_{s' \in S} P_{ss'}^a v_k(s') \right)$$

V_k for the **Random Policy**

0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0

0.0 -1.0 -1.0 -1.0

-1.0 -1.0 -1.0 -1.0

-1.0 -1.0 -1.0 -1.0

-1.0 -1.0

0.0 -1.7 -2.0 -2.0

-1.7 -2.0 -2.0 -2.0

-2.0 -2.0 -2.0 -1.7

-2.0 -2.0

0.0

0.0

Greedy Policy w.r.t. V_k

	←	←	\Leftrightarrow
Ť	Ţ		ţ
t	⇔	Ļ	ţ
⇐	\rightarrow	\rightarrow	

	←	←	¢-
1	ţ	Ļ	↓
†	ţ	Ļ	Ļ
Ľ.,	\rightarrow	\rightarrow	

k = 1

k = 0

 $\gamma = 1$

k = 3

k = 2

0.0	-2.4	-2.9	-3.0
-2.4	-2.9	-3.0	-2.9
-2.9	-3.0	-2.9	-2.4
-3.0	-2.9	-2.4	0.0

 π = equiprobable random action choices

$$v_{k+1} = \sum_{a \in A} \pi(a \mid s) \left(R_s^a + \gamma \sum_{s' \in S} P_{ss'}^a v_k(s') \right)$$

V_k for the **Random Policy**

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0-1.0-1.0 0.0

0.0 -1.7 -2.0 -2.0

-1.7 -2.0 -2.0 -2.0

-2.0 -2.0 -2.0 -1.7

0.0 -2.4 -2.9 -3.0

-2.4 -2.9 -3.0 -2.9

-2.9

-1.7 0.0

-2.0 -2.0

-2.9 -3.0

Greedy Policy w.r.t. V_k

	←	←	\Leftrightarrow
1	ţ		Ļ
1	⇔	Ļ	Ŧ
⇐	\rightarrow	\rightarrow	

 $R_{=-1}$ on all transitions

 $\gamma = 1$

-3.0	-2.9	-2.4	0.0
0.0	-6.1	-8.4	-9.0
-6.1	-7.7	-8.4	-8.4
-8.4	-8.4	-7.7	-6.1
-9.0	-8.4	-6.1	0.0

0.0	-14.	-20.	-22.
-14.	-18.	-20.	-20.
-20.	-20.	-18.	-14.
-22.	-20.	-14.	0.0

k = 2

k = 3

k = 10

k = 1

k = 0

 $k = \infty$

Policy improvement theorem (How to improve the policy)

• Given the value function for any policy π , evaluate the policy:

Improve the policy by acting greedily with respect to the value function:

 $\pi'(s) = \arg \max_{a} q_{\pi}(s, a)$ $(\pi' \text{ is not unique})$

• where better means:

 $q_{\pi'}(s,a) \ge q_{\pi}(s,a)$ for all s,a

with equality only if <u>both policies are optimal</u>

 $q_{\pi}(s, a)$ for all s, a

The dance of policy and value (Policy Iteration)

- Policy evaluation: Estimate value function Iterative policy evaluation
- Policy improvement: generate better policy by acting greedily Greedy policy improvement

- Each policy is *strictly better* than the previous, until *eventually both are optimal*
- There are *no local optima*
- The dance converges in a finite number of steps, usually very few

General Policy Iteration (GPI)

Policy evaluation: Estimate value function – Any policy evaluation

Policy improvement: generate better policy – Any policy improvement

Recall the **full policy-evaluation backup**:

$$v_{k+1}(s) = \sum_{a} \pi(a|s) \sum_{s',r} p(s',r|s,a) \left[r + \gamma v_k(s')\right] \qquad \forall s \in \mathcal{S}$$

Here is the full value-iteration backup:

$$v_{k+1}(s) = \max_{a} \sum_{s',r} p(s',r|s,a) \left[r + \gamma v_k(s') \right] \qquad \forall s \in \mathcal{S}$$

Value Iteration

Illustration: Rooms Example

Four actions, fail 30% of the time No rewards until the goal is reached, $\gamma = 0.9$.

cf. Dynamic Programming

Curse of dimensionality

• Values are governed by nice recursive equations:

 $V_{k+1}(s) \leftarrow \max_{a \in A} \left(r_{s}^a \right)$

- variables (the dimensionality of the problem) E.g. in Go, there are 10^{170} states
- The *action set* may also be very large or continuous E.g. in Go, branching factor is ≈ 100 actions
- The solution may require *chaining many steps* E.g. in Go games take ≈ 200 actions

$$\left(\sum_{ss' \in S}^{a} p_{ss'}^{a} V_k(s') \right), \forall s \in S$$

• The number of states grows exponentially with the number of state

Key Challenges in RL

To solve large problems, we need to:

- *Approximate the iterations* (using sampling, cf. asynchronous dynamic programming, temporal-difference learning)
- Generalize the value function to unseen states using function approximation

Learning online using experience

Learning online using experience

Recall: Monte Carlo

 $V(S_t) \leftarrow V(S_t) + \alpha \Big[G_t - V(S_t) \Big]$

Temporal Difference (TD) Learning

 $V(S_t) \leftarrow V(S_t) + \alpha \left[R_{t+1} + \gamma V(S_{t+1}) - V(S_t) \right]$

Temporal Difference (TD) Learning

 $V(S_t) \leftarrow V(S_t) + \alpha \Big[R_{t+1} + \gamma V(S_{t+1}) - V(S_t) \Big]$

TD Prediction

Policy Evaluation (the prediction problem) function v_{π}

Recall: Simple every-visit Monte Carlo method:

 $V(S_t) \leftarrow V(S_t)$

Policy Evaluation (the prediction problem): for a given policy π , compute the state-value

$$S_t$$
) + $\alpha \begin{bmatrix} G_t - V(S_t) \end{bmatrix}$
target: the actual return after time *t*

function v_{π}

Recall: Simple every-visit Monte Carlo method:

 $V(S_t) \leftarrow V(S_t)$

<u>The simplest temporal-difference method TD(0):</u> $V(S_t) \leftarrow V(S_t) + \alpha$

Policy Evaluation (the prediction problem): for a given policy π , compute the state-value

$$S_t$$
) + $\alpha \begin{bmatrix} G_t - V(S_t) \end{bmatrix}$
target: the actual return after time *t*

$$\begin{bmatrix} R_{t+1} + \gamma V(S_{t+1}) - V(S_t) \end{bmatrix}$$
TD target: an estimate of the return

You are the Predictor

Suppose you observe the following 8 episodes:

A, 0, B, 0

- **B**, 1
- **B**, 0

Assume Markov states, no discounting ($\gamma = 1$)

V(B)? V(A)?

You are the Predictor

TD vs MC (I)

- TD can learn *before* knowing the final outcome It can learn online after every step MC must wait until the end of the episode before return is known
- TD can learn *without* the final outcome TD can learn from incomplete sequences as opposed to MC (needs complete sequences) TD works in continuing environments, MC only works for episodic (terminating) environments

TD vs MC (II)

- Bias/Variance trade off
 - MC target i.e. the return is an unbiased estimate of the value function
 - TD target is a biased estimate
 - TD target is much lower variance than the return:
 - Return depends on many random actions, transitions, rewards
 - TD target depends on *one* random actions, transitions, rewards
- MC has high variance, zero bias
- TD has low variance, some bias

TD vs MC (III)

 Monte Carlo converges to solution with minimum mean-squared error (MSE) Best fit to observed returns $\sum_{k=1}^{K}\sum_{k=1}^{T_k}\left(G_t^k-V(s_t^k)\right)^2$

In the AB example, V(A) = 0

 TD(0) converges to solution of max likelihood Markovian model Solution to MDP that best fits the data $\hat{\mathcal{P}}^{a}_{s,s'} = \frac{1}{N(s,a)} \sum_{k=1}^{K} \sum_{t=1}^{T_k} \mathbf{1}(s^k_t, a^k_t, s^k_{t+1} = s, a, s')$

$$\hat{\mathcal{R}}_s^a = rac{1}{N(s,a)}\sum_{k=1}^K\sum_{t=1}^{T_k}\mathbf{1}(s_t^k,a_t^k)$$

In the AB example, V(A) = 0.75

 $a_t^k = s, a) r_t^k$

A, 0, B, 0**B**, 1 **B**, 1 V(B)?**B**, 1 V(A)?**B**, 1 **B**, 1 **B**, 1 B, 0 $A - \frac{r=0}{100\%} B$

n-step TD Prediction

Idea: Look farther into the future when you do TD backup (1, 2, 3, ..., n steps)

n-step TD Prediction

Idea: Look farther into the future when you do TD backup (1, 2, 3, ..., n steps)

Mathematics of *n*-step TD Targets

• Monte Carlo: $G_t \doteq R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \dots + \gamma^{T-t-1} R_T$

• TD:

• Use V_t to estimate remaining return

 $G_{\star}^{(1)} \doteq R_{t+1} + \gamma V_t(S_{t+1})$

• *n*-step TD:

• 2 step return: $G_t^{(2)} \doteq R_{t+1} + \gamma R_{t+2} + \gamma^2 V_t(S_{t+2})$

• *n*-step return:

$$G_t^{(n)} \doteq G_t \text{ if } t+n \ge$$

 $\geq T$)

Bootstrapping & Sampling

- Bootstrapping update involves an estimate
 - MC does not bootstrap
 - DP bootstraps
 - TD bootstraps
- Sampling update samples an expectation MC samples
 DP does not sample
 TD samples

Unified View of Reinforcement Learning

Thank You