
Reinforcement Learning – Part II

AI4Good Summer Lab 2020

Khimya Khetarpal
School of Computer Science, McGill University, Mila Montreal

Slides adapted from Doina Precup, David Silver, and Rich Sutton’s book



Who am I?
2017-

2016-17

2014-16

2013-14

2011-13

2007-11 Undergrad in Electronics & Communications

Embedded Systems Engineer

Research Associate

Masters in Computer Engineering

Perceptual Computing Engineer

Ph.D. in Computer Science



Outline
q Recap

q Markov Decision Processes

q Bellman Equations

q Dynamic Programming

q Temporal Difference Learning

q A Unified View of Reinforcement Learning



Agent-Environment Interaction



Markov Property



Markov Decision Processes



Markov Decision Processes



Value Function



Value Function



Value Function



Value Function



Value Function



More on the Bellman Equation

This is a set of equations (in fact, linear), one for each state.
The value function for p is its unique solution.

Backup diagrams:



Action-Value Function



Optimal Policies and Value Functions



Why Optimal State-Value Functions are Useful

Any policy that is greedy with respect to is an optimal policy.

Therefore, given    , one-step-ahead search produces the long-term optimal actions.

E.g., back to the gridworld:



What About Optimal Action-Value Functions?

Given      , the agent does not even have to do a one-step-ahead search:  



Bellman Optimality Equation for v*
The value of a state under an optimal policy must equal the expected return for the best 
action from that state:

The relevant backup diagram: 

is the unique solution of this system of nonlinear equations.



The relevant backup diagram: 

is the unique solution of this system of nonlinear equations.

Bellman Optimality Equation for q*



Dynamic Programming

Key Idea: Turn Bellman equations into update rules

For instance, we can use DP for 

ü Iterative Policy Evaluation

ü Policy Iteration

ü Value Iteration



3

Iterative Policy Evaluation (Prediction)



R

γ = 1

Example: Small Gridworld



R

γ = 1

Example: Small Gridworld



R

γ = 1

Example: Small Gridworld



R

γ = 1

Example: Small Gridworld



∞

R

γ = 1

Example: Small Gridworld



Policy improvement theorem (How to improve the policy)

Given the value function for any policy , evaluate the policy:

Improve the policy by acting greedily with respect to the value function:

where better means:

with equality only if both policies are optimal

(     is not unique)



The dance of policy and value (Policy Iteration)

• Policy evaluation: Estimate value function – Iterative policy 
evaluation 

• Policy improvement: generate better policy by acting greedily –
Greedy policy improvement

Each policy is strictly better than the previous, until eventually both 
are optimal

There are no local optima

The dance converges in a finite number of steps, usually very few



General Policy Iteration (GPI)

• Policy evaluation: Estimate value function – Any policy 
evaluation 

• Policy improvement: generate better policy – Any policy 
improvement



15

Value Iteration

Recall the full policy-evaluation backup:

Here is the full value-iteration backup:





cf. Dynamic Programming

T

T T TT

TT

T

TT

T

T

T



Curse of dimensionality



Key Challenges in RL



Learning online using experience



Learning online using experience



Recall: Monte Carlo

T T T TT

T T T T T

T T

T T

TT T

T TT

St



Temporal Difference (TD) Learning

T T T TT

T T T T TTTTTT

T T T T T



Temporal Difference (TD) Learning



TD Prediction
Policy Evaluation (the prediction problem): for a given policy p, compute the state-value
function vπ

Recall:  Simple every-visit Monte Carlo method:

target: the actual return after time t



TD Prediction
Policy Evaluation (the prediction problem): for a given policy p, compute the state-value
function vπ

Recall:  Simple every-visit Monte Carlo method:

target: the actual return after time t

TD target: an estimate of the return

The simplest temporal-difference method TD(0):



You are the Predictor

Suppose you observe the following 8 episodes:

A, 0, B, 0
B, 1
B, 1
B, 1
B, 1
B, 1
B, 1
B, 0

V(B)?
V(A)?

Assume Markov states, no discounting (𝜸 = 1)



You are the Predictor



TD vs MC (I)

• TD can learn before knowing the final outcome

It can learn online after every step

MC must wait until the end of the episode before return is known

• TD can learn without the final outcome

TD can learn from incomplete sequences as opposed to MC (needs complete sequences)

TD works in continuing environments, MC only works for episodic (terminating) environments



TD vs MC (II)
• Bias/Variance trade off

MC target i.e. the return is an unbiased estimate of the value function

TD target is a biased estimate

TD target is much lower variance than the return:

- Return depends on many random actions, transitions, rewards

- TD target depends on one random actions, transitions, rewards

• MC has high variance, zero bias

• TD has low variance, some bias



TD vs MC (III)
• Monte Carlo converges to solution with minimum mean-squared error (MSE)

Best fit to observed returns

In the AB example, V(A) = 0

• TD(0) converges to solution of max likelihood Markovian model

Solution to MDP that best fits the data

In the AB example, V(A) = 0.75

A, 0, B, 0
B, 1
B, 1
B, 1
B, 1
B, 1
B, 1
B, 0

V(B)?
V(A)?



n-step TD Prediction

Idea: Look farther into the future when 
you do TD —

backup (1, 2, 3, …, n steps)



n-step TD Prediction

Idea: Look farther into the future when 
you do TD —

backup (1, 2, 3, …, n steps)



Mathematics of n-step TD Targets

•Monte Carlo:

•TD:

•Use Vt to estimate remaining return

•n-step TD:

•2 step return:

• n-step return:



Bootstrapping & Sampling
• Bootstrapping update involves an estimate

MC does not bootstrap

DP bootstraps

TD bootstraps

• Sampling update samples an expectation

MC samples

DP does not sample

TD samples



Unified View of Reinforcement Learning



Thank You


